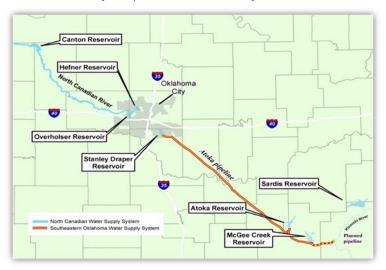


Oklahoma City Utilities Department **2019 Drinking Water Quality Report**



unicipal tap water is the life source for every community. It contributes to public health, keeps citizens safe from waterborne illness, drives economic prosperity, and helps us in our daily lives.

The Oklahoma City Water Utilities Trust (OCWUT) is committed to providing clean, fresh drinking water to residents and visitors throughout Central Oklahoma. More than 1.4 million Oklahomans in 18 different communities receive drinking water through our retail and wholesale water programs. That's nearly one-third of the state's population.

Water Sources

klahoma City's water footprint spans 250 miles and includes seven surface water reservoirs from five Oklahoma counties. They include Canton Lake in northwest Oklahoma, McGee Creek, Lake Atoka and Sardis Lake in southeastern Oklahoma, as well as Lake Overholser, Lake Hefner and Lake Stanley Draper in Oklahoma City.

Water from the northwest travels along the North Canadian River and empties into Lake Overholser before being sent up to the Hefner Treatment Plant via a series of canals and natural tributaries. Water from the southeast travels through a 60", 100-mile pipeline that was constructed in 1962. OCWUT is currently building a second, 72" pipeline so we can continue to meet water demand for future generations.

Our seven reservoirs feed into the Hefner and Draper water treatment plants, which treat the water, then distribute it through the city's water distribution system. Our reservoirs also provide recreational opportunities to lake visitors, including boating, fishing and water skiing.

OWCUT also has an agreement in place to pull water from the City of Edmond to serve a small number of residents. To see a copy of their CCR, visit http://edmondok.com

Raw water accumulates in reservoirs from spring and summer rains. As water travels over the ground, it can pick up naturally-occurring minerals found in rocks and soil, pesticides and herbicides used in farming, as well as bacteria from animal or human activity.

Raw water delivered to our reservoirs is processed at Oklahoma City's two water treatment plants, the Hefner Water Treatment Plant and the Draper Water Treatment Plant. Each plant treats the water in a slightly different way, based upon the raw water make-up and the technology available at each facility.

During treatment, certified water quality experts take raw water through an extensive treatment process that removes harmful bacteria and other contaminants. Ozonation and activated carbon filtration are two of the processes we utilize. We also disinfect the water by introducing a small amount of chlorine. Fluoride is also added to help prevent tooth decay.

Meeting the Test

o ensure water is safe to drink, the Environmental Protection Agency (EPA) and Oklahoma Department of Environmental Quality (ODEQ) set regulations that limit the amounts of certain contaminants that can be in water provided by public utilities.

Oklahoma City tests the water at its two treatment plants. Tests are conducted as raw water is coming into the plants, as well as after the water has been treated and pushed into our distribution system. OCWUT owns its own Statecertified laboratory, which tests the City's water.

We test the water at more than 240 State-approved sites throughout our distribution system. This helps ensure the

quality of water remains at all points along our 3,800-mile distribution system. In 2019, our plant operators and laboratory chemists tested more than 205,000 individual water samples. Results are reported monthly to the ODEQ, and

serve as independent quality control.

Test results are also included here, our annual Consumer Confidence Report (CCR), which is a requirement of the 1974 Safe Drinking Water Act.

In each case, Oklahoma City water meets or surpasses all regulatory requirements set forth by the EPA. Oklahoma City's CCR is included with this report, and can be found online at www.okc.gov/ccr. To receive a copy of this report by mail, call Utilities Customer Service at (405) 297-2833.

A note on COVID-19

The COVID-19 pandemic has raised concern with government officials and citizens across the U.S. Per the U.S. EPA, the virus has not been found in drinking water supplies, and given the virus' nature, the risk to water supplies remains low.

Americans may continue to use and drink water from their tap as usual.

Oklahoma City Utilities - Water Quality Summary 2019											
ETECTED CONTAM- INANTS	UNITS	IDEAL GOAL (EPA'S MCLG)	HIGHEST LEVEL AL- LOWED (EPA'S MCL)	HEFNER WTP PWS ID 1020902 DRAPER WT PWS ID 1020900		COMPLIANCE	MAJOR SOURCES IN DRINKING WATER				
organic Compounds				Average level detected in	most recent testing - 2019	\/T0	Added during treatment for dental health or dissolved fro				
Fluoride ¹	ppm	4	4	0.67	0.69	YES All Sites < AL	natural deposits				
Lead	ppb	0	AL = 15	Most recent systemwide distribution testing August 2019 - 90th Percentile = 2.82		YES YES	Corrosion of household plumbing; erosion of natural dep its				
Barium	ppm	2	2	Highest level, most recent testing - 2013 0.052 0.057		YES	Discharge of Drilling Wastes; discharge from metal refin ies; erosion of natural deposits				
Copper	ppm	0	AL = 1.3	Most recent systemwide distribution testing August 2019 - 90th Percentile = 0.126		All Sites < AL YES	Corrosion of household plumbing; erosion of natural dep its				
Arsenic	ppb	0	10	Highest level, most recent testing - 2013 < 2 < 2		YES	Erosion of natural deposits; runoff from orchards; runo from electronics and glass production wastes				
Nitrate-Nitrite ²	ppm	10	10	Highest level, most	recent testing - 2019 0.107	YES	Runoff from fertilizer; leaching from septic tanks, sewage erosion of natural deposits				
idiological											
Gross Alpha	nCi//		15	Highest level, most < 3.00							
Gross Alpha Gross Beta	pCi/L pCi/L	0	15 50	< 3.00 6.75 ± 0.56	< 3.00 < 4.00						
Radium 226	pCi/L pCi/L	0	50	6.75 ± 0.56 < 1.00	< 4.00 < 1.00	YES	Decay of natural and man-made deposits				
Radium 226 Radium 228	pCi/L pCi/L	0	5	< 1.00	< 1.00						
Uranium	pCI/L ppb	0	30	< 1.00	< 1.00						
				~ 1.0	× 1.0						
sinfection By-Products	Stage 2 F	Rule Monitorin	g~								
otal Trihalomethanes⁴	ppb	0	80 (LRAA)	Most recent systemwide dis Highest Locational Runnir 12716 NE 36th S Range Detecte	ng Annual Average (LRAA) t (Draper) - 73.83 rd: 9.15 - 73.83	YES	By-product of drinking water disinfection				
				Highest quarterly 21.61 Range o 4.08 - 30.40	73.83 letected 23.64 - 84.42						
Haloacetic Acids ⁴	ppb	0	60 (LRAA)	Most recent systemwide dis Highest Locational Runnir 12716 NE 36th S Range Detecte Highest quarterly	ng Annual Average (LRAA) t (Draper) - 50.44 rd: 4.96 - 50.44	YES	By-product of drinking water disinfection By-product of disinfection by ozone Only Hefner Plant uses Ozone				
Bromate⁵				11.45 Range o 3.51 - 14.10 Highest quarterly av	12.63 - 59.68 erage (RAA) - <5.00	YES					
			(RAA)	Range detected	- <5.00 - 9.38		Sing fromor Fiant acces Section				
ecursor Removal											
otal Organic Carbon ⁶ (TOC)			TT = Ratio must be greater than or equal to 1.00 for compliance	Average of monthly ratios 1.571 0.442 Monthly Ratio = (% TOC removed) divided by (% TOC removal required)		YES	Naturally occurring				
sinfection Residual											
Chloramines as Chlorine ⁷	ppm	NA	4.0	Average 3.70	readings 3.36	YES	Water additive used to control microbes				
as Cilioffile			Range detected	2.3 - 5.0	2.9 - 3.7						
crobiological											
Coliform Bacteria	CFUs % positive	0	Presence of Coliform bacteria in <5% of samples	2019 System-wide Month having the highest Each month had 4 positive sar 15 positive Coliform re 0.512 % o	% positive - July & August nples in 252 samples - 1.59 % sults in 2925 samples	YES	Naturally present in the environment				
a wide a											
arity				Lowest monthly % of s	amples with < 0.3 NTU						
arity			TT O O NIT!			1					
arity Turbidity ⁸	NTU	NA	TT = > 0.3 NTU in not more than	100.0%	98.9%	YES	Lime and/or calcium carbonate particles from softening				
	NTU % > 0.3	NA		100.0% Highest sin	98.9% gle reading	YES	Lime and/or calcium carbonate particles from softening forts; soil runoff				
Turbidity ⁸	% > 0.3		in not more than 5% of samples	100.0%	98.9%	YES					
100	% > 0.3		in not more than 5% of samples	100.0% Highest sin	98.9% gle reading	YES					
Turbidity ⁸ Ing Term 2 Enhanced 5 Cryptosporidium ⁹	% > 0.3 Surface Wa	ater Treatment	in not more than 5% of samples	100.0% Highest sin	98.9% gle reading 3.97 ource water averages are <0.075	YES					
Turbidity ⁸ ng Term 2 Enhanced \$	% > 0.3 Surface Wa	ater Treatment	in not more than 5% of samples t Rule	100.0% Highest sin 0.25 Most recent testing 2016-2017. S cysts/L, which is consid	98.9% gle reading 3.97 ource water averages are <0.075 lered low risk category.		forts; soil runoff Storm runoff, agricultural runoff and leaking sewage sy				
Turbidity ⁸ Ing Term 2 Enhanced 5 Cryptosporidium ⁹	% > 0.3 Surface Wa	ater Treatment	in not more than 5% of samples t Rule	100.0% Highest sin 0.25 Most recent testing 2016-2017. S	98.9% gle reading 3.97 ource water averages are <0.075		forts; soil runoff Storm runoff, agricultural runoff and leaking sewage sy				
Turbidity ⁸ Ing Term 2 Enhanced 5 Cryptosporidium ⁹	% > 0.3 Surface Wa	ater Treatment	in not more than 5% of samples t Rule	100.0% Highest sin 0.25 Most recent testing 2016-2017. S cysts/L, which is consid	98.9% gle reading 3.97 ource water averages are <0.075 lered low risk category.		forts; soil runoff Storm runoff, agricultural runoff and leaking sewage sy				
Turbidity ⁸ Ing Term 2 Enhanced 5 Cryptosporidium ⁹ Itected UCMR3 Analyte	% > 0.3 Surface Water Control of the control of th	oter Treatment	in not more than 5% of samples t Rule NA	Most recent testing 2016-2017. S cysts/L, which is considerable.	98.9% gle reading 3.97 ource water averages are <0.075 lered low risk category. Range	YES	forts; soil runoff Storm runoff, agricultural runoff and leaking sewage sy tems By-product of drinking water disinfection, making of dye explosives, matches, printing fabrics, herbicides, antise				
Turbidity ⁸ ong Term 2 Enhanced S Cryptosporidium ⁹ etected UCMR3 Analyte	% > 0.3 Surface Wa cysts/L es (2013) ¹⁰ ppb	0 NA	in not more than 5% of samples t Rule NA	Most recent testing 2016-2017. S cysts/L, which is considerable. Average 36.4	98.9% gle reading 3.97 ource water averages are <0.075 lered low risk category. Range <20.0 - 36.4	YES	forts; soil runoff Storm runoff, agricultural runoff and leaking sewage sy tems By-product of drinking water disinfection, making of dye explosives, matches, printing fabrics, herbicides, antise tics, toothpastes and in paper pulp processing. Naturally occurring. By-product of making steel and oth alloys, plating, dyes and pigments, leather and wood				
Turbidity ⁸ ong Term 2 Enhanced S Cryptosporidium ⁹ etected UCMR3 Analyte Chlorate exavalent Chromium	% > 0.3 Surface Water State S	0 NA NA 100 (0.100	in not more than 5% of samples t Rule NA NA NA 100 (0.100 mg/	Most recent testing 2016-2017. S cysts/L, which is considered as 36.4	98.9% gle reading 3.97 ource water averages are <0.075 lered low risk category. Range <20.0 - 36.4 <0.030 - 0.391	YES NA NA	forts; soil runoff Storm runoff, agricultural runoff and leaking sewage sy tems By-product of drinking water disinfection, making of dye explosives, matches, printing fabrics, herbicides, antise tics, toothpastes and in paper pulp processing. Naturally occurring. By-product of making steel and oth alloys, plating, dyes and pigments, leather and wood preservation. Naturally occurring. By-product of making steel and oth alloys, plating, dyes and pigments, leather and wood alloys, plating, dyes and pigments, leather and wood				
Turbidity ⁸ Ing Term 2 Enhanced S Cryptosporidium ⁹ Retected UCMR3 Analyte Chlorate exavalent Chromium Total Chromium	% > 0.3 Surface Wa cysts/L es (2013) ¹⁰ ppb ppb	NA NA 100 (0.100 mg/L)	in not more than 5% of samples t Rule NA NA NA 100 (0.100 mg/L)	Most recent testing 2016-2017. S cysts/L, which is considered and the second se	98.9% gle reading 3.97 ource water averages are <0.075 lered low risk category. Range <20.0 - 36.4 <0.030 - 0.391 <0.200 - 0.471	YES NA NA YES	Storm runoff, agricultural runoff and leaking sewage sy tems By-product of drinking water disinfection, making of dye explosives, matches, printing fabrics, herbicides, antise tics, toothpastes and in paper pulp processing. Naturally occurring. By-product of making steel and oth alloys, plating, dyes and pigments, leather and wood preservation. Naturally occurring. By-product of making steel and oth alloys, plating, dyes and pigments, leather and wood preservation.				

Definitions & Abbreviations Used in the Water Quality Summary

EPA – US Environmental Protection Agency

MCL – Maximum Contaminant Level is the highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG – Maximum Contaminant Level Goal is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow a margin of safety.

MRDL – Maximum Residual Disinfectant Level is the highest level of a disinfectant allowed in drinking water based on an annual average and does not apply to individual samples. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants. Compliance with the MRDL is calculated as a Running Annual Average (RAA).

MRDLG - Maximum Residual Disinfectant Level Goal is the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamina-

RAA - Running Annual Average is the average of the last 12 months or last 4 quarters that the facility is in operation. Disinfectants and disinfectant by-products monitored in this way are Total Trihalomethanes, Haloacetic Acids, Bromate and Chloramines.

LRAA – Locational Running Annual Average is the average of the last 12 months or last 4 quarters for each identified monitoring location in the distribution system. This differs from past requirements, which determined compliance by calculating the RAA of samples from all monitoring locations across the distribution system. Total Trihalomethanes and Haloacetic Acids are monitored in this way.

AL - Action Level

TT – Treatment Technique - a required process intended to reduce the level of a contaminant in drinking water.

NTU - Nephelometric Turbidity Units (a measure of clarity)

pCi/L – picocuries per liter (a measure of radioactivity)

ppm – parts per million or milligrams per liter (mg/L)

ppb – part per billion or micrograms per liter (μg/L)

CFU – Colony Forming Units

< - less than > - greater than

People with Health Concerns

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their healthcare providers. The EPA and Centers for Disease Control guidelines on appropriate ways to lessen the risk of infection by Cryptosporidium (an intestinal parasite that can be fatal in some immune-compromised persons) and other microbial contaminants are

available from the Safe Drinking Water Hotline at 1-800-426-4791.

Footnotes

Monitoring Frequency Note: The state has set forth enforceable regulations on how often contaminants must be monitored and tested. Some of our data, though representative, is more than one year old.

ODEQ monitors and tests the following Inorganic Compounds and Radiological Compounds for Oklahoma City Utilities: Barium, Arsenic, Gross Alpha, Gross Beta, Radium 226 + 228 and Uranium.

Required Sampling Frequency:

Every 9 years - Fluoride, Barium and Arsenic

Every 6 years – Radionuclides

1. Fluoride: Monitored every 12 hours at each Water Treatment Plant. The highest single reading for 2019 at each plant was below the MCL and considered a safe

Draper – Highest single reading = 0.83 ppm. Average fluoride concentration for 2019 = 0.69 ppm

Hefner – Highest single reading = 0.90 ppm. Average fluoride concentration for 2019 = 0.67 ppm

Footnotes (con't.)

- 2. Nitrate-Nitrite: Measured as the sum of Nitrate-N and Nitrite-N.
- 3. Disinfection By-Products Stage 2 Rule Monitoring: U.S. water utilities are required to continuously improve the quality of water delivered to customers. The Federal Environmental Protection Agency and the Oklahoma Department of Environmental Quality enforce drinking water laws and develop long-range improvement activities. In 2009, Oklahoma City collected information on how THMs and HAAs change in the water system and is working with EPA and DEQ to decrease the numbers.
- 4. Total Trihalomethanes and Haloacetic Acids: The MCL is based on the RAA; therefore, the MCL does not apply to individual samples that are allowed to be higher than the MCL.
- **5. Bromate:** The MCL is based on the RAA; therefore, the MCL does not apply to individual samples that are allowed to be higher than the MCL. Some people who drink water containing bromate in excess of the MCL over many years may have an increased risk of getting cancer.
- 6. Total Organic Carbon: Total organic carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection by-products. These by-products include Trihalomethanes (THMs) and Haloacetic Acids (HAAs). Drinking water containing these by-products in excess of the MCL (Maximum Contaminant Level) may lead to adverse health effects. TOC compliance is based on the percent TOC removed, not the total amount present. The starting TOC at the Draper Treatment facility is low; therefore, the potential for formation of THMs and HAAs due to TOC is low. The THM and HAA values for the Draper Treatment facility are below the LRAA MCL, which is currently considered a safe level for these disinfection by -products. Draper Treatment facility uses an alternative method (SUVA analysis) for meeting TOC removal criteria.
- 7. Chlorine: Compliance with the 4.0 mg/L MRDL is based upon an annual average; therefore, the MRDL does not apply to individual samples that are allowed to be higher than the MRDL.
- 8. <u>Turbidity:</u> Turbidity is a measure of the cloudiness or clarity of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

Note: On August 24, 2019 the combined filter effluent turbidity spiked to 3.75 NTU. The spike lasted 7 minutes and 35 seconds. Again, on August 29, 2019 the combined filter effluent turbidity spiked to 3.97 NTU. The spike lasted 8 minutes and 3 seconds. Both incidents were caused by insufficient filter backwash. DEQ was notified and no further action was required since the spikes lasted less than 15 minutes. The health and safety of our water customers was not compromised.

- 9. Cryptosporidium: Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Cryptosporidium is part of the Long Term 2 Enhanced Surface Water Treatment Rule and testing was required for a consecutive 24 months. Our testing was completed in December of 2017. Source water averages are < 0.075 cysts/L, which are considered low risk category.
- 10. UCMR3: EPA uses the Unregulated Contaminant Monitoring (UCM) program to collect data for contaminants suspected to be present in drinking water, but that do not have health-based standards set under the Safe Drinking Water Act (SDWA). Every five years EPA reviews the list of contaminants, largely based on the Contaminant Candidate List. The SDWA Amendments of 1996 provide for:

Monitoring no more than 30 contaminants every five years Monitoring only a representative sample of public water systems serving less than 10,000 people

Storing analytical results in a National Contaminant Occurrence Database (NCOD).

UCMR3 is the third round of monitoring under the UCM Rule.

Overholser Water Treatment Plant was offline for the entire year of 2019. All data related to the Overholser Treatment Plant has been removed from the Consumer Confidence Report.

City of Oklahoma City **Drinking Water Quality Report**

For the testing period between January 1-December 31, 2019

HOW TO READ YOUR WATER QUALITY REPORT

The year(s) tests were conducted.

Below this level a contaminant has no known or expected health risks.

Highest amount of a contaminant EPA allows in drinking water.

How a contaminant ends up in Oklahoma City's drinking water.

Year Sample	Contaminant	Highest Average	Range of Levels	MCLG	MCL	Units	Violation	Possible Source(s) of Contaminant
2016	Substance 1	0.05	0.02-0.11	2	4	ppm	N	Discharge of drilling wastes or metal refineries; erosion of natural deposits.
2016	Substance 2	2.4	0-3.4	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

The amount from lowest to highest of a contaminant detected in Oklahoma City's drinking water.

Parts per billion—one ppb equals to one teaspoon in 1,302,000 gallons.

Parts per million - one ppm equals to one teaspoon in 1,302 gallons.

What is a Contaminant?

Put simply, a contaminant in water is anything other than hydrogen or oxygen, or H20, the two hydrogen atoms and one oxygen atom that make up one water molecule. Contaminants do not mean there is a health risk. They simply mean there is something else in the water besides the elements that make up the water.

Understanding the Tables

The following tables contain scientific terms and measures, some of which may require explanation.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements which a water system must follow.

Average: Regulatory compliance with some MCLs are based on running annual average monthly samples.

Erosion of natural deposits: This language is required in the "possible source of contaminant column" for contaminants that are naturally-occurring. Erosion of natural deposits actually means the substance is naturally-present in drinking water and was not added.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology,

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: not applicable

ppb: micrograms per liter or parts per billion. One part per billion is the same as one ounce in 7,812,500 gallons of water, an order of magnitude smaller than one part per million.

ppm: milligrams per liter or parts per million. One part per million is the same as one ounce in 7,812.5 gallons of water.

Oklahoma City Water Utilities Trust

In 2019, the American Water Works Association (AWWA) awarded the Oklahoma City Utilities Department with its Partnership for Safe Water designation for its commitment to continued water quality improvements and system optimization.

The Partnership of Safe Water is an alliance of the AWWA, Association of State Drinking Water Administrators, the U.S. Environmental Protection Agency, the National Association of Water Companies, Association Municipal Water Agencies and the Water Research Foundation.

To earn designation in the Partnership for Safe Water, Utilities earning Safe Water designation must meet stringent criteria after going through a rigorous self-assessment in order to be considered.

Got Questions? Contact Us!

Customer Service

(405) 297-2833 water@okc.gov

To start or change water or trash service, pay a bill or report a trash collection issue.

24-hour Emergency Dispatch

(405) 297-3334

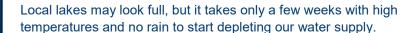
To report water or sewer outages, water quality concerns or water emergencies.

Water Quality Questions or Concerns:

(405) 297-3483

Public Information / Media Requests:

(405) 297-2422


Oklahoma City Water Utilities Trust

Carl Edwards, Chair, Independent Trustee

David Greenwell, Vice Chairman
Jessica Martinez Brooks, Independent Trustee
David Holt, Mayor Trustee
Mark K. Stonecipher, Surrogate Trustee
Craig Freeman, City Manager Trustee
Chris Browning, General Manager
Frances Kersey, Secretary

OCWUT meetings are held the 1st and 3rd Tuesday of every month at 2 p.m. (unless otherwise posted) inside the Oklahoma City Council Chambers in City Hall, 210 North Walker Ave. Agendas are posted on the City's website at www.okc.gov.

SqueezeEveryDrop.com

You can help by following these easy water conservation tips:

Fix leaky toilets and faucets.

Don't water your yard more than two times per week.

Turn off the water when brushing your teeth.

Use a bucket and sponge to save water while washing your car.

Top your garden with mulch to help keep soil moist.

Check your sprinkler system to make sure it works correctly.

For more information, visit <u>squeezeverydrop.com</u> or follow us on Facebook or Twitter @squeezeeverydrop.

